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An Extended Equation of State Modeling Method
I. Pure Fluids
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A new technique is proposed here to represent the thermodynamic surface of
a pure fluid in the fundamental Helmholtz energy form. The peculiarity of
the present method is the extension of a generic equation of state for the
target fluid, which is assumed as the basic equation, through the distortion
of its independent variables by individual shape functions, which are repre-
sented by a neural network used as function approximator. The basic equa-
tion of state for the target fluid can have the simple functional form of a
cubic equation, as, for instance, the Soave–Redlich–Kwong equation assumed
in the present study. A set of nine fluids including hydrocarbons, haloalkane
refrigerants, and strongly polar substances has been considered. For each of
them the model has been regressed and then validated against volumetric
and caloric properties generated in the vapor, liquid, and supercritical regions
from highly accurate dedicated equations of state. In comparison with the
underlying cubic equation of state, the prediction accuracy is improved by a
factor between 10 and 100, depending on the property and on the region. It
has been verified that about 100 density experimental points, together with
from 10 to 20 coexistence data, are sufficient to guarantee high prediction
accuracy for different thermodynamic properties. The method is a promising
modeling technique for the heuristic development of multiparameter dedicated
equations of state from experimental data.
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1. INTRODUCTION

The representation of thermodynamic properties of a pure fluid with
the highest accuracy is one of the main tasks of thermodynamic mod-
eling. Fundamental multiparameter equations of state (EoS) were devel-
oped allowing any thermodynamic function to be calculated by simple
mathematical differentiation. The EoSs pertaining to this category can
be regressed only where the thermodynamic behavior of the target fluid
is well known from a wide number of precise experimental data. The
obtained dedicated equations of state (DEoS) are specific for each fluid
of interest. The accuracies of their predictions are at the same level as the
experimental uncertainty of the available measurements.

The established procedure to develop wide-range fundamental EoSs,
due to the pioneering activity of Wagner and co-workers [1–3], is heu-
ristic and non-theoretically founded because the EoS functional form is
shaped and optimized directly on the database through powerful optimi-
zation methods.

In recent times, the extended corresponding states (ECS) modeling
technique [4–9] was also extensively studied to verify whether it could be
improved to obtain a further method for the development of wide-range
fundamental EoSs. A new heuristic procedure descending from the con-
ventional ECS technique was recently proposed for the haloalkanes in a
predictive mode [10] and in a correlative mode [11]; moreover, a wide-
range fundamental EoS dedicated to fluoropropane (R227ea) was obtained
[12].

In the present work, the ECS framework is exploited to turn this
technique into a further flexible heuristic method for the development of
a highly accurate fundamental EoS dedicated to a target fluid. The search
for a convenient reference fluid fulfilling a “conformality condition” with
the target fluid, as required by the ECS methods, is avoided here because
the EoS for the reference fluid is substituted by an equation for the target
fluid itself. Such an equation is improved and extended through the appli-
cation of the proposed modeling technique.

2. FUNDAMENTAL EQUATIONS OF STATE

An equation of state for a pure fluid can be expressed in terms of
the molar Helmholtz free energy A as a function of the independent vari-
ables temperature T and density ρ. The dimensionless Helmholtz energy
a =A/(RT ) is split into two contributions, i.e., the ideal part a◦ and the
residual part aR:
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a(T , ρ)= A

RT
= A◦

RT
+ AR

RT
=a◦(T , ρ)+aR(T , ρ), (1)

where R is the molar gas constant. The definition of the Helmholtz energy
for a fluid in the ideal-gas state A◦ is

A◦(T , ρ)=U◦(T )−T S◦(T , ρ)=H ◦(T )−RT −T S◦(T , ρ), (2)

where the internal energy U◦, enthalpy H ◦, and entropy S◦ of the ideal
gas can be calculated from an equation for the ideal-gas isobaric heat
capacity C◦

p. Consequently the dimensionless ideal part a◦ reads

a◦(T , ρ) = A◦(T , ρ)

RT
= H ◦

o

RT
− S◦

o

R
−1+ 1

RT

∫ T

To

C◦
p(T )dT

− 1
R

∫ T

To

C◦
p(T )

T
dT + ln

(
Tρ

Toρo

)
, (3)

where H ◦
o and S◦

o are the enthalpy and entropy values of the ideal gas at
a reference state (To, ρo). Therefore, the individual C◦

p(T ) function for the
fluid of interest is the only element required for calculation of the ideal
part a◦.

The Helmholtz energy equation of a fluid in the temperature and den-
sity variables is a fundamental equation of state, i.e., any thermodynamic
property can be obtained from it through a suitable combination of deriv-
atives of its form and no integral calculation is required [1, 3]. In general,
apart from a few cases such as the speed of sound, any thermodynamic
quantity m can be represented as

m(T ,ρ)=m◦(T , ρ)+mR(T , ρ). (4)

The ideal part m◦, which for some properties is a function of T only,
can be obtained either through differentiation of the ideal part a◦ of the
fundamental equation of state or directly from the basic definition of the
quantity m◦ in which the C◦

p(T ) function and its mathematical transfor-
mations are present. In both cases the required input is limited to the
individual function C◦

p(T ). The residual part mR is calculated from the
residual part aR through a combination of derivatives of its functional
form according to classical thermodynamics [1, 3].

The basic target of the development of an equation of state is then to
provide an equation for the residual part aR, from which all the proper-
ties are obtained. This is the aim also of the modeling technique proposed
herein.
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3. ECS BASIC MODELING

A rigorous derivation of the corresponding-states principle is given by
statistical mechanics [13, 14] under the hypothesis of similarity between
the molecular potentials of different fluids. Fluids satisfying such a
hypothesis are said to be conformal.

For conformal fluids the similarity of their reduced residual Helm-
holtz free energies can be demonstrated [15, 16] and it is expressed as

aR
j (Tj , ρj )=aR

0 (T0, ρ0)=aR
0 (Tj /fj , ρjhj ), (5)

where the subscripts 0 and j denote the reference and the target fluid,
respectively. In case of perfectly conformal fluids the scale factors fj and
hj simply coincide with the ratios of the critical constants:

fj = Tc,j /Tc,0 (6)

hj = ρc,0/ρc,j . (7)

Since the conformality condition is exactly attained only for a very
limited number of fluids, it is convenient to introduce two empirical cor-
rection factors, which are called shape functions and are denoted as θj and
φj :

fj = Tc,j

Tc,0
θj (Tj , ρj ) (8)

hj = ρc,0

ρc,j
φj (Tj , ρj ). (9)

The differentiation of Eq. (5) with respect to Tj and ρj gives the fol-
lowing equations, respectively:

(
∂aR

j

∂Tj

)

ρj

= −
uR

j

Tj

=−uR
0 (1−FT )−ZR

0 HT

Tj

(10)

(
∂aR

j

∂ρj

)

Tj

=
ZR

j

ρj

= uR
0 Fρ +ZR

0 (1+Hρ)

ρj

. (11)

In the former two equations, the four logarithmic derivatives of the scale
factors FT ,Fρ,HT , and Hρ are defined as

FT = Tj

fj

(
∂fj

∂Tj

)
ρj

(12)
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Fρ = ρj

fj

(
∂fj

∂ρj

)
Tj

(13)

HT = Tj

hj

(
∂hj

∂Tj

)
ρj

(14)

Hρ = ρj

hj

(
∂hj

∂ρj

)
Tj

(15)

Equations (10) and (11) allow for calculation of the residual com-
pressibility factor ZR

j =Zj −1 and of the reduced residual internal energy
uR

j = UR
j /(RTj ) of the target fluid, once an EoS for the reference fluid

and the equations for the scale factors are available. Analogous formu-
lations are obtained for any other thermodynamic function of the tar-
get fluid, and greater details are given in Refs. 4 and 11. A summary
of the equations required for the property calculations is given in the
Appendix.

The ECS model was extensively developed from the late 1970s until
the early 1990s as a mean for the prediction and correlation of thermo-
physical properties for pure fluids and mixtures [4, 5]. In these traditional
approaches, the determination of the scale factors as continuous functions
of temperature and density was never attained. In some studies the scale
factors, and then the shape functions, were locally calculated from the
solution of an equation system composed of Eq. (5) plus a supplemen-
tary condition. The solution of such a system is possible only if DEoSs
for both fluids are available [4].

Lately, the ECS method was revisited by some authors [8–12, 17],
who independently determined the shape functions through a minimiza-
tion procedure using experimental data of various properties for the fluid
of interest, making the method similar to the classical multiproperty fitting
approach [1–3]. In such a way both the shape functions become available
as continuous analytical functions of temperature and density.

In particular, in the works of Scalabrin et al. [10–12, 17] an artificial
neural network (ANN) was assumed as a general function approximator
for the representation of the shape functions. This work was focused on
the refrigerant family both as pure fluids [11] and as mixtures [17], always
assuming R134a as the reference fluid.

In any case, the fundamental condition for the applicability of an
ECS technique is a basic conformality between the target and the refer-
ence fluid or, extensively, among all the target fluids pertaining to the same
family of the reference fluid.
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4. EXTENDED EQUATION OF STATE MODEL: MATHEMATICAL
FORMULATION

In case that either the conformality condition does not hold for the
fluids of a family or a precise DEoS is not available for any component
of the family, whose fluids are supposed to share a conformality condition,
the ECS methods cannot be reliably applied. In fact, the purpose of such
methods is to obtain a DEoS for the target fluid through the correction
of the DEoS of the reference fluid, assumed to be conformal with the tar-
get fluid, by the distortion of its independent variables with suitable shape
functions. Where the corresponding states conformality fails, the similar-
ity connection among the fluids of the family is no longer sustainable and
the method becomes ineffective. On the other hand, the unavailability of
a reference DEoS practically prevents the application of the method, with
an equivalent final result of failure of the modeling technique.

The present proposal aims at overcoming such a limitation perform-
ing the correction by the variables distortion of a simple EoS, which
roughly represents the target fluid itself, instead of the DEoS of a refer-
ence fluid, avoiding in this way any problem about the fulfillment of the
conformality condition. In fact, it would no longer be necessary to have
a “reference fluid,” following the classical interpretation of the ECS the-
ory, but only a “reference equation” for the target fluid itself, whose pre-
cision is enhanced, or “extended,” through the application of the shape
functions. Hence, the name of extended equation of state (EEoS) has been
chosen to denote this new modeling method. Anyway, to avoid any misun-
derstanding, in the following the term “reference equation” is substituted
with “basic equation.”

As a consequence of this new procedure, in Eqs. (8) and (9) the Tc,j
and ρc,j critical parameters coincide with Tc,0 and ρc,0, respectively, since
the target fluid and the reference fluid are the same. In the present case it
follows that

fj = θj (Tj , ρj ) hj =φj (Tj , ρj ) (16,17)

The simplest, but at the same time sound, EoS that can be chosen
for the present purpose is a cubic EoS in one of its more recurrent ver-
sions. In fact it has general applicability to practically any fluid because it
requires only critical data and a few vapor pressure values to calculate the
individual acentric factor. Anyway, the proposed method is not restricted
to the choice of a cubic EoS but any EoS, represented in the fundamental
Helmholtz energy form, can be suitably considered, provided that the inde-
pendent variables to which the shape functions distortion is applied are T

and ρ. If, for instance, a DEoS for the target fluid has to be updated after



Extended EOS Modeling Method for Pure Fluids 1287

the publication of new data sets, this equation can be directly considered
as the basic EoS from which to develop a new and updated DEoS.

As will be shown later, the shape functions θ(T , ρ) and φ(T ,ρ) are
to be regressed forcing the model to represent known values of experimen-
tally accessible thermodynamic quantities. Their functional formulation is
here heuristically obtained applying a multi-layer feedforward neural net-
work (MLFN) as a universal function approximator. Since the proposed
modeling technique comes from the combination of the EEoS method
with neural networks (NN), it is concisely indicated from now on as
EEoS–NN model.

4.1. Cubic Basic EoS

The EEoS model is here developed assuming a cubic EoS as the ref-
erence for the target fluid in order to assure a broad applicability of the
present model. Among the cubic EoSs, the Soave–Redlich–Kwong (SRK)
equation [18, 19] was chosen. Mollerup [20] already proposed to determine
the shape functions of a fluid with respect to a reference fluid represent-
ing both fluids through a SRK cubic EoS. This approach is only partially
adopted here, because in the present work the reference fluid coincides
with the fluid of interest, so the basic EoS is represented by the SRK
equation for the fluid itself. Moreover, the shape factors are here deter-
mined directly with experimental data using an advanced heuristic tech-
nique.

The SRK cubic EoS in the temperature T and molar volume v vari-
ables is expressed as

P = RT

v −b
− aSRK

(v +b)v
(18)

with

aSRK =0.42748
(RTc)

2

Pc
α(Tr) (19)

b=0.08664
RTc

Pc
(20)

The parameter aSRK incorporates the function α(Tr) dependent on
the reduced temperature Tr =T/Tc:

α(Tr)=
{

1+k(ω)
[
1−

√
Tr

]}2
, (21)
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where k depends on the acentric factor ω, also known as Pitzer’s parame-
ter, according to

k(ω)= c1 + c2ω+ c3ω
2 (22)

with c1 =0.480, c2 =1.574, and c3 =−0.176.
The SRK equation, as any cubic equation, gives only “reasonable”

trends of the thermodynamic quantities rather than precise values. For
example, it cannot represent the density with a sufficient accuracy; devia-
tions in density may exceed 10% in vapor, liquid, and supercritical regions
[21]. These shortcomings are due to the elementary mathematical form
and to the low number of adjustable parameters. A simple but effective
modification was proposed by Peneloux et al. [22] with the introduction
of the volume translation to improve the representation of the liquid-phase
density; the volume v is shifted by a constant c, which is determined
with saturated-liquid-density data. The SRK EoS with volume translation,
which is the form assumed here, reads

P = RT

v + c−b
− aSRK

(v + c+b)(v + c)
(23)

In the present work the fluid-specific coefficient c was determined on
a saturated-liquid density value generated from the DEoS for the target
fluid at Tr =0.7. For the considered fluids the critical constants, the param-
eters ω and c, together with the references for the DEoSs from which the
saturated liquid densities were calculated, are listed in Table I.

A basic requirement of the present modeling technique is to obtain
a DEoS in the fundamental form a(T , ρ), which allows the calculation
of any thermodynamic quantity only by combining derivatives. Therefore,

Table I. Critical Constants and Parameters for the Considered Pure Fluids

Fluid Tc (K) Pc (MPa) ω c (L · mol−1) Reference (DEoS)

C2H6 305.33 4.8718 0.0993 2.86496×10−3 [23]
C3H8 369.85 4.24766 0.15242 5.20115×10−3 [24]
n-C4H10 425.16 3.796 0.19959 7.85903×10−3 [24]
R32 351.255 5.782 0.2768 1.29133×10−2 [25]
R125 339.33 3.629 0.30349 7.79698×10−3 [26]
R134a 374.18 4.05629 0.32689 1.13412×10−2 [27]
R143a 346.04 3.7756 0.26113 1.34996×10−2 [28]
NH3 405.4 11.333 0.25601 7.23145×10−3 [29]
H2O 647.096 22.064 0.344 7.59369×10−3 [30]
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the SRK EoS is transformed into the Helmholtz energy form using the
relation:

aR = 1
RT

∫ v

v=∞

(
RT

v
−P

)∣∣∣∣
T =const

dv, (24)

where Eq. (23) is used to calculate P . This approach results in

aR = ln
(

v

v + c−b

)
− aSRK

RT b
ln
(

v + c+b

v + c

)
(25)

It is convenient to rewrite this equation as a function of density,
remembering that v =1/ρ. The Helmholtz energy basic equation, denoted
with the subscript 0, finally reads

aR
0 =− ln[1+ (c−b)ρ0]− aSRK

RT0b
ln
[

1+ (c+b)ρ0

1+ cρ0

]
. (26)

The thermodynamic surface represented by such a basic equation is
modified distorting its independent variables T and ρ by the shape func-
tions θj and φj as empirical correction functions.

The thermodynamic properties obtained from differentiation of Eq.
(26) represent the quantities of the basic equation which, indicated with
subscript 0, enter into Eqs. (5), (10), (11), and the other ones that can be
written for further properties.

4.2. Multi-Layer Feedforward Neural Networks

The determination of the residual Helmholtz energy aR
j (Tj , ρj ) for

the target fluid is possible only after the shape functions have been deter-
mined. This subsequently allows any other residual function to be calcu-
lated through the first and second derivatives of aR

j (Tj , ρj ) with respect
to temperature and density. In the present work the shape functions are
expressed in the form of a multi-layer feedforward neural network. The
general architecture of MLFN is illustrated in Fig. 1; it consists of three
layers, respectively called input, hidden, and output layer.

The neurons of the input layer are indicated as elements of an array
U of dimension I . Their number coincides with the number of indepen-
dent variables of the system, in this case, the temperature and density of
the fluid, plus one. The last neuron, labeled Bias1, is a constant with a
convenient value assigned to it:

UI =Bias1 (27)
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H
J+1=Bias2

H
J

H
j

H4

H
3

H2

H1

S2

S1

U
I
=Bias1

U2

U1

w
jkw

ij

Output layer
K

Hidden layer
J+1

Input layer
I

...
...

Fig. 1. General topology of a three-layer feedforward
neural network with two output functions.

In the output layer the number of neurons equals the output quan-
tities, which in this case are the two shape functions θj (Tj , ρj ) and
φj (Tj , ρj ). They are indicated as elements of an array S of dimension K.
Therefore, for the present problem the dimensions of the input and output
layers are, respectively, I =3 and K =2.

The hidden layer, which performs the transformation of the signals
from the input layer to the output layer, contains an arbitrary number
of neurons. They are indicated as elements of a vector H of dimension
J +1. The more neurons are used, the better is the approximation capabil-
ity of the MLFN. Conversely, as the number of free parameters grows, the
computation time rises and the problem of overfitting becomes relevant; a
compromise is then required. In the hidden layer there is also a bias neu-
ron, Bias2, just like in the input layer:

HJ+1 =Bias2 (28)

Both the Bias1 and Bias2 values have been set to 1.
The input signals undergo a linear transformation to normalize them

in the arbitrarily chosen range [Amin,Amax] set at Amin =0.05 and Amax =
0.95. The normalization is done according to

Ui =ui(Vi −Vi,min)+Amin 1≤ i ≤ I −1 (29)
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with

ui = Amax −Amin

Vi,max −Vi,min
(30)

Here Vi,min and Vi,max represent the lower and upper limits of the inde-
pendent variable Vi , i.e., of temperature and density:

V1 = Tj (31)

V2 = ρj (32)

These limits represent also the validity limits of the obtained equa-
tion of state, because the extrapolation of temperature and density outside
such ranges may result in unreliable calculated values. A transfer function
g in the form of an arctangent function normalized in the range [0, 1] is
assumed:

g(x)= 1
π

arctan(γ x)+ 1
2

(33)

with γ =0.1. The transfer function computes the signal output of a neuron
from its signal inputs for both the hidden and the output layers; respec-
tively, they are

Hj = g

(
I∑

i=1

wijUi

)
1≤ j ≤J (34)

Sk = g


J+1∑

j=1

wjkHj


 1≤k ≤K. (35)

The parameters wij and wjk are the so-called ‘weighting factors’ and
constitute the free parameters to regress in the training process. In the
present work a total of J = 9 neurons was chosen for the hidden layer,
excluding the Bias2 term. There are consequently 27 weighting factors
wij and 20 weighting factors wjk, and there are then altogether 47 free
parameters in the model. The number of neurons in the hidden layer
was optimized by trial-and-error. The value J = 9 is set here as an ideal
compromise between computation speed and flexibility of the resulting
mathematical form for the representation of the considered fluids.

The output values Sk of the output layer neurons are de-normalized
to real output variables Wk, which in this case are the shape functions θj

and φj , through the following transformations:

Wk = Sk −Amin

sk
+Wk,min 1≤k ≤K (36)
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with

sk = Amax −Amin

Wk,max −Wk,min
(37)

where

W1 = θj (Tj , ρj ) (38)

W2 = φj (Tj , ρj ). (39)

The values of Vi,min and Vi,max depend on the selected range of the
variables for the studied fluid and are therefore fluid specific. For many of
the considered fluids the values of Wmin are set to 0.6 for both θmin and
φmin, while the values of Wmax are set to 1.4 for both θmax and φmax. Con-
sequently, the shape functions are limited in the range [0.6, 1.4]. Anyway,
for some fluids, a wider range, i.e., [0.4, 1.6], was chosen.

4.3. Calculation of Thermodynamic Properties

The availability of all the essential elements of the model, i.e., the
basic EoS and the analytical forms of the shape functions, allows the deri-
vation of any thermodynamic property function for the target fluid. As an
example, the calculation of the two functions uR

j (Tj , ρj ) and ZR
j (Tj , ρj ),

already mentioned in Eqs. (10) and (11), is demonstrated. From the cited
equations the two functions read:

uR
j = uR

0 (1−FT )−ZR
0 HT (40)

ZR
j = uR

0 Fρ +ZR
0 (1+Hρ). (41)

In these equations the reduced residual functions indicated with the
subscript 0 are obtained from the basic EoS, in the reduced residual Helm-
holtz energy form aR

0 (T0, ρ0), according to

ZR
0 = ρ0

(
∂aR

0

∂ρ0

)

T0

(42)

uR
0 = UR

0

RT0
=−T0

(
∂aR

0

∂T0

)

ρ0

, (43)

where the variables of the basic EoS are

T0 = Tj/θj (44)

ρ0 = ρjφj . (45)
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In Eqs. (40) and (41) the derivatives of the shape functions FT ,HT ,Fρ ,
and Hρ are calculated from Eqs. (12)–(17). The shape functions and their
derivatives are calculated at the present fluid conditions (Tj , ρj ) following
the neural network formalism presented in Section 4.2 and given in greater
detail in the Appendix.

For the case when the assumed basic EoS is the SRK equation, Eq.
(26), the analytical expressions for the aR

0 derivatives in Eqs. (42) and (43)
read: (

∂aR
0

∂T0

)

ρ0

=− 1
RT0b

(
∂aSRK

∂T0
− aSRK

T0

)
ln
[

1+ (c+b)ρ0

1+ cρ0

]
(46)

(
∂aR

0

∂ρ0

)

T0

=− c−b

1+ (c−b)ρ0
− aSRK

RT0b

[
c+b

1+ (c+b)ρ0
− c

1+ cρ0

]
, (47)

where the derivative of the SRK coefficient aSRK in Eq. (46) has to be cal-
culated from Eq. (19). Any further thermodynamic property function can
be obtained with analogous procedures using the mathematical expressions
provided in the Appendix.

5. TRAINING OF THE EEOS–NN MODEL

5.1. Training Procedure

As previously explained, the present EEoS–NN modeling technique
for pure fluids recovers all the formalism of the basic ECS method, with
the basic EoS given by the SRK cubic equation, Eq. (26), and the two
individual shape functions θj (Tj , ρj ) and φj (Tj , ρj ) represented through
a MLFN. The coefficients of the shape functions in neural form are
obtained for each fluid of interest with a regression procedure, indicated
as training, using data of thermodynamic properties for the fluid itself.
The training of the MLFN is performed minimizing an objective func-
tion, expressed in terms of mean squares, which can include properties of
a different nature as in a multiproperty fitting framework [1–3].

In a first step of the present work the fluid-specific EEoS–NN model
has been heuristically developed from volumetric and saturation properties
assuming an objective function that includes two parts accounting for both
contributions. The one for volumetric data reads

fob,1 = 1
n1

n1∑
i=1

[
(ZR

j )
exp
i − (ZR

j )EEoS
i

(ZR
j )

exp
i

]2

(48)
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while that for saturation properties reads

fob,2 = 1
n2

n2∑
i=1

{
ln ϕEEoS

j [T ,ρ
exp
sl (T )]− ln ϕEEoS

j [T ,ρ
exp
sv (T )]

}2

i
. (49)

In these equations n1 and n2 are the numbers of points in the training
sets for volumetric and saturation properties, respectively. Throughout this
work the superscript “exp” indicates values generated from the DEoS of
the target fluid and assumed as pseudo-experimental values, as explained
in Section 5.2, while the subscripts “sl” and “sv” stand for saturated liquid
and saturated vapor, respectively. It is recalled that the fugacity coefficient
of a target fluid j in Eq. (49) is calculated as

ln ϕj =gR
j − ln(1+ZR

j ) (50)

The two former objective functions, Eqs. (48) and (49), are combined
together to form the overall objective function:

fob,overall = ξfob,1 + (1− ξ)fob,2 (51)

in which the functions fob,1 and fob,2 are differently weighted. The coeffi-
cient ξ was chosen from experience as an optimal value that balances the
two contributions giving satisfactory results for both the properties; in the
present case, it was set to the value 0.8.

In a second step of the study the EEoS–NN model has been regressed
assuming an objective function which includes also caloric quantities,
together with the unavoidable volumetric and saturation properties. The
considered caloric properties are the isochoric heat capacity Cv, the iso-
baric heat capacity Cp, and the speed of sound w. The first part of the
objective function fob,1 now reads

fob,1 = 1
Pn1

P∑
p=1

ξp

n1∑
i=1

[
(mj )

exp
i − (mj )

EEoS
i

(mj )
exp
i

]2

p

. (52)

In Eq. (52) the pth property mj represents alternatively the resid-
ual compressibility factor ZR, the residual isochoric heat capacity CR

v , the
residual isobaric heat capacity CR

p , and the speed of sound w; thus, P =4.
For each of the four properties the corresponding data set is com-

posed of n1 values and its contribution is weighted in the summation
according to the individual factor ξp. The second component of the objec-
tive function fob,2 is represented by Eq. (49) again; the two parts are com-
bined according to Eq. (51).
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In both cases the training of the MLFN is performed through the
minimization of Eq. (51) with conventional gradient descent techniques
[31].

5.2. Generation of Values of Thermodynamic Properties

Since the main aims of the present work are to test the proposed
modeling technique and to verify its performances for a group of pure
fluids, it was decided to use generated data of thermodynamic properties
instead of experimental data. In this way the results of the analysis are not
affected by the drawbacks related to experimental data. In fact, these are
in general affected by a significant experimental error noise, with a differ-
ent accuracy for each thermodynamic quantity, and they are irregularly
distributed in the (T ,P ) range of interest.

These aspects hinder the evaluation of the quality of a heuristic
model. Thus, it was preferred not to use experimental values for the model
training and validation, but rather to use pseudo-experimental values gen-
erated on a regular grid of the independent variables from the DEoSs of
the studied fluids. The surfaces represented by these equations are consid-
ered as “true,” as they are the best representation of the available experi-
mental data base, and then the proposed method is evaluated in the most
favorable conditions. The use of experimental data for obtaining a dedi-
cated EoS for a pure fluid in the EEoS–NN format will be a matter of
further work, once the technique has been consolidated.

Since the constraint of conformality between the target and the refer-
ence fluid affecting the ECS methods is in this work overcome, the con-
sidered fluids can belong to different chemical families. The chosen fluids,
listed in Table I, are divided into a group of non-polar fluids (three alk-
anes), a group of polar fluids (four haloalkanes), and a group of strongly
polar fluids (ammonia and water). The difficulties in accurately describing
the properties of the selected fluids increase in this order.

Sets of values of several thermodynamic properties have been gener-
ated for each fluid from the corresponding DEoS in the temperature and
pressure ranges indicated in Table II, taking care of having them distrib-
uted on a regular grid. The thermodynamic surface was divided into three
regions: the liquid phase (denoted by “l”) for T < Tc and P > P sat, the
supercritical condition (denoted by “sc”) for T > Tc and P > Pc, and the
vapor phase (denoted by “v”) for the remaining domain.

Besides density and vapor–liquid equilibrium (VLE), the reduced
residual functions of Helmholtz energy aR, internal energy uR, enthalpy
hR, Gibbs energy gR, and entropy sR were considered. These functions
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are indicated as “first-order” thermodynamic properties because they
are analytically obtained by combining aR and first-order derivatives of
aR.

Furthermore, thermodynamic properties involving higher-order deriv-
atives of aR, e.g., the reduced residual isochoric heat capacity cR

v , the
reduced residual isobaric heat capacity cR

p , and the speed of sound w, were
considered. These properties are called “second-order” properties.

For each fluid and for each property 5329 points were generated on
the cited grid. From the generated data set, data subsets were extracted for
the two training processes described in Section 5.1 and for the validation
step. A similar procedure is followed for the VLE data.

For the first training process the distribution of the training and vali-
dation data sets can be seen in Table II. The subset used for training was
obtained regularly extracting density values from the generated data on
the original grid. For the validation set the remaining values of the density
grid were used together with points for the other properties.

For the second training step, the data for each of the four thermo-
dynamic quantities included in the objective function, Eq. (52), were reg-
ularly extracted from the same original grid as well, but with a larger
interval. The validation set is again composed of the remaining values.
The number of points used in the second training step is reported in
Table III.

Table III. Dimensions of the Training and Validation Sets for the Considered Fluids in the
Multiproperty Case

Training NPT Validation NPT

Each of four Each of nine
propertiesa propertiesb

Fluid sc l v Overall P,ρ, T |VLE sc l v Overall P,ρ, T |VLE

C2H6 28 52 37 117 13 1302 2249 1661 5212 24
C3H8 14 80 23 117 21 448 3935 829 5212 40
n-C4H10 8 92 17 117 22 360 4265 587 5212 42
R32 13 73 31 117 18 546 3340 1326 5212 36
R125 24 69 24 117 17 1010 3284 918 5212 33
R134a 16 83 18 117 21 424 4086 702 5212 41
R143a 24 70 23 117 18 896 3413 903 5212 34
NH3 6 75 36 117 20 176 3487 1549 5212 39
H2O 4 115 50 169 21 86 3654 1420 5160 41

a Properties: ZR, cR
v , cR

p ,w.
b Properties: ZR, aR, uR, hR, gR, sR, cR

v , cR
p ,w.
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6. VALIDATION PROCEDURES

During the training procedure described in Section 5.1 an equation in
the EEoS–NN format was obtained for each considered fluid by regression
of the data in its training set. In the present section, the performances of
these models and of the cubic equation assumed as a reference are evalu-
ated with respect to the data of the validation sets; see Section 5.2.

Throughout this work the deviations of the data from the model
are expressed in terms of the average absolute deviation (AAD), which is
defined as

AAD(%)= 100
NPT

NPT∑
i=1

∣∣∣∣∣
mexp −mmod

mexp

∣∣∣∣∣
i

(53)

for the generic property m, where the superscript “mod” stands for the
value calculated from the model to be validated and NPT denotes the
number of points of the data set.

6.1. Accuracy of a Cubic EoS: Case of SRK with Volume Translation

The predictions of the SRK cubic EoS with respect to first- and sec-
ond-order thermodynamic properties were tested for the nine fluids listed
in Table I. The results for the first-order properties are presented in detail
for each fluid in Table IV. The following conclusions can be drawn from
these results:

– notwithstanding the Peneloux volume translation, the prediction
accuracy of the SRK equation for density is still far from being com-
parable to that of a DEoS, particularly for polar fluids. This can be
argued looking at the results for ZR in particular for R32, R143a,
ammonia, and water. Even for simple alkanes, the prediction accu-
racy is not homogeneous for different regions of the PρT surface;

– increased errors are observed for properties involving the aR deriva-
tive with respect to temperature, such as uR, hR, and sR. For them
it was verified that the deviations are sometimes higher than 20%
in the vapor region of the PρT surface;

– for polar fluids the accuracy is usually worse than for non-polar ones;
in fact, the alkanes are described better than the other substances.

The second-order properties are considered in Table V, where the heat
capacities are examined both as residual and as overall quantities. Devia-
tions for these properties are larger than for properties involving only first
derivatives. For some fluids the AADs for the residual heat capacities are
very high and in particular for cR

v they increase to average values above
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Table IV. Accuracy of the SRK Equation in Terms of AAD for First-Order Properties in
the Three Main Thermodynamic Regions

AAD (%)

ZR uR hR

Fluid sc l v sc l v sc l v

C2H6 3.79 0.75 1.37 3.44 1.44 5.44 2.59 1.32 4.05
C3H8 4.68 0.73 1.72 3.05 1.18 6.87 3.35 1.10 5.12
n-C4H10 4.83 0.77 2.27 3.59 1.26 9.53 3.77 1.18 6.97
R32 5.99 0.77 7.06 7.87 2.83 19.67 7.44 2.59 16.30
R125 5.76 0.81 2.83 3.81 1.07 11.38 3.04 0.98 7.84
R134a 5.67 0.77 3.28 4.95 1.41 14.38 5.03 1.32 11.34
R143a 6.70 0.91 4.86 3.31 1.99 12.14 3.88 1.84 10.09
NH3 3.51 0.54 5.49 9.60 2.85 21.16 8.13 2.60 16.95
H2O 2.24 0.70 6.76 11.67 4.51 19.16 9.24 4.17 14.22
Mean 5.16 0.75 4.23 4.39 2.06 13.94 4.04 1.90 10.86

aR gR sR

Fluid sc l v sc l v sc l v

C2H6 3.24 1.83 1.73 3.47 1.49 1.49 4.96 2.53 9.31
C3H8 6.23 1.44 1.85 5.66 1.21 1.73 1.78 2.13 12.04
n-C4H10 6.60 1.37 2.45 5.96 1.17 2.29 2.44 2.17 16.87
R32 9.05 2.91 7.58 7.87 2.33 7.33 7.02 5.31 27.07
R125 7.11 1.64 3.42 6.58 1.37 3.14 8.25 2.15 21.25
R134a 8.17 1.79 3.09 7.26 1.49 3.17 3.32 2.46 21.44
R143a 8.80 2.28 5.10 8.03 1.88 4.99 2.70 4.01 17.04
NH3 4.40 2.40 5.32 4.08 1.92 5.39 12.93 5.02 30.78
H2O 5.67 3.12 8.03 3.84 2.59 7.29 18.96 31.19 7.29
Mean 6.50 2.07 4.60 5.99 1.71 4.38 5.34 6.44 18.10

40%. The error is obviously reduced when the ideal part is considered as
well. Nonetheless, it is clear that the SRK EoS is not at all effective for the
residual part of this group of properties. The accuracy of calculated speeds
of sound in the liquid and supercritical regions ranges from 5 to 25% for
all the fluids, while the accuracy in the vapor phase is significantly better.
The results are very similar for non-polar and polar fluids.

Results for the representation of saturation properties are reported
in Table V. The saturation densities are predicted with rather high devia-
tions and with an evident difference between the liquid and vapor phases.
For the saturated liquid the deviations for all the fluids amount to several
per cent units showing that, notwithstanding the density correction at the
temperature of Tr = 0.7 due to the volume translation, the basic trend of
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Table V. Accuracy of the SRK Equation in Terms of AAD for Second-Order Properties in
the Three Main Thermodynamic Regions and for Saturation Properties

AAD (%)

cR
v cR

p w

Fluid sc l v sc l v sc l v

C2H6 34.44 57.36 53.95 7.20 13.99 13.66 5.21 22.13 0.41
C3H8 30.22 63.19 70.30 10.16 8.01 25.82 7.88 23.44 0.36
n-C4H10 26.94 65.74 72.73 11.23 8.12 30.20 9.65 22.83 0.39
R32 52.17 28.11 75.42 16.04 19.28 16.04 12.75 22.36 1.73
R125 34.35 58.55 68.05 10.13 7.56 23.78 7.17 26.34 0.73
R134a 27.30 40.07 74.44 13.00 10.22 36.84 8.87 24.38 0.55
R143a 36.07 50.77 71.26 11.87 11.64 32.01 8.31 25.15 0.91
NH3 70.46 12.07 80.49 18.85 19.22 45.05 16.18 14.43 2.34
H2O 76.14 22.18 81.53 25.64 33.69 48.56 20.18 13.45 2.29
Mean 36.99 44.26 71.78 11.17 14.48 30.18 8.34 21.61 1.24

Cv Cp Saturation properties

Fluid sc l v sc l v P sat ρsl ρsv

C2H6 3.85 9.66 2.81 4.17 6.80 2.42 0.88 5.31 0.55
C3H8 3.16 8.72 3.15 5.54 3.26 3.53 1.01 4.59 0.92
n-C4H10 2.34 7.63 2.48 5.00 2.66 3.18 1.49 4.09 1.41
R32 14.33 9.96 10.32 11.30 11.04 10.28 1.83 6.86 3.41
R125 4.31 9.33 3.66 5.08 3.25 3.27 0.85 5.12 0.80
R134a 4.58 8.16 4.99 7.46 4.49 5.85 1.22 4.91 1.51
R143a 5.32 9.30 4.42 6.31 5.04 4.85 1.38 5.69 1.83
NH3 25.64 5.30 14.74 13.79 11.37 13.62 2.35 6.00 4.33
H2O 36.23 12.58 18.81 20.18 19.81 17.02 5.37 8.67 5.47
Mean 6.44 8.90 8.39 6.48 7.41 8.02 1.90 5.71 2.35

a cubic EoS for the dense phase is substantially wrong. The behavior for
the saturated vapor density is far better, but this is probably due to the
modest contribution of the residual density function in the vapor region,
where the ideal part prevails.

The vapor pressure P sat is rather well represented without a relevant
systematic error. This behavior is coherent with the specialization of cubic
EoSs in representing this property, since the function α(Tr), Eqs. (21) and
(22), was regressed by Soave [19] on vapor-pressure data for several fluids.

In summary, it can be concluded that the representation of thermo-
dynamic properties by the SRK cubic EoS is not satisfying, in particular,
when second-order properties are considered.
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6.2. Validation of the EEoS–NN Models Trained on Density
and Coexistence Data

In a first step the EEoS–NN model was trained for each of the fluids
listed in Table I solely on volumetric and saturation data, following the
regression procedure presented in Section 5.1. Nine fluid-specific EoSs in
this format were obtained. The coefficients of the equations for ethane,
R32, and ammonia are given in Table VI as examples for the reader’s con-
venience.

The training procedure yields the MLFN equations for the shape
functions θj (Tj , ρj ) and φj (Tj , ρj ) of the target fluid. In Figs. 2 and 3 the
two functions are plotted for R32 as an example, showing a quite regular
trend for both of them. The method is very effective in reproducing the
shape of the thermodynamic surface with limited distortions of the inde-
pendent variables.

The performance of the obtained EEoS–NN models is evaluated in
terms of overall deviation doverall, which is a linear combination of the vol-
umetric deviation d1 and of the vapor–liquid coexistence condition d2:

d1 = 1
n1

n1∑
i=1

∣∣∣∣∣
(ZR

j )
exp
i − (ZR

j )EEoS
i

(ZR
j )

exp
i

∣∣∣∣∣ (54)

d2 = 1
n2

n2∑
i=1

∣∣∣ln ϕEEoS
j [T ,ρ

exp
sl (T )]− ln ϕEEoS

j [T ,ρ
exp
sv (T )]

∣∣∣
i

(55)

doverall =0.8d1 +0.2d2 (56)

The weights of the two components of the overall deviation, i.e., 0.8
for the volumetric deviation and 0.2 for the coexistence condition, are the
same as those assumed for the definition of the objective function, Eq.
(51).

The results of the training process are reported in Table VII. The
overall deviations found for the training and the validation data sets are
very close each others and the validation values are never greater than the
training ones. This is an indirect proof that overfitting was avoided in the
regressions. For both quantities the deviations are very low, showing that
the proposed modeling technique is effective in representing a thermody-
namic surface for which a discrete set of local values is given as input.

The deviations of the EEoS–NN models with respect to the data of
the validation sets are summarized in Table VIII for first-order properties,
separately for the three main thermodynamic regions. The representation
of these quantities can be considered excellent for all properties, and the
deviations are quite similar for all fluids without any noteworthy decrease
of accuracy.
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Fig. 2. Shape function θj = θ(Tj, ρj ) for the target fluid R32.

The three thermodynamic regions are represented with small differ-
ences; while the liquid phase is always described with an excellent accu-
racy, for the vapor phase some fluctuations of accuracy were found but
without an apparent regularity in the dependence on the fluid. In the
supercritical region the model behaves quite similarly as in the vapor.
Properties involving the temperature derivative of aR are represented with
a lower accuracy. This can be explained by the fact that the model was
not trained on quantities involving temperature derivatives; except for the
coexistence curve, only a volumetric property was given as input and this
one solely involves the density derivative of aR, see Eq. (11).

The EEoS–NN models were also checked for the accuracy in predict-
ing the second-order properties; the results are presented in Table IX. Both
residual heat capacities are represented with an accuracy which is worse
by one or two orders of magnitude with respect to those of the first-order
properties. Moreover, deviations for the residual isochoric heat capacity
are roughly three times worse than deviations for the residual isobaric heat
capacity.

Fortunately these thermodynamic properties are used in practice only
as overall quantities. For the overall heat capacities the deviations are
significantly reduced and become comparable with current experimental
uncertainties. This is evidently due to a “dilution” of the error in the
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Fig. 3. Shape function φj =φ(Tj, ρj ) for the target fluid R32.

summation of ideal and residual parts. In general, deviations increase from
the vapor to the liquid and to the supercritical region. The overall heat
capacity functions in the vapor phase are often represented very well,
whereas for the other regions their precision can be considered acceptable.
The speed of sound is well represented in the vapor phase, but for the
other regions the performance is worse, although it is anyway comparable
with that of a multiparameter DEoS.

The comparison for saturation densities and vapor pressures, reported
in Table IX, shows satisfactory performance, in particular, for the liquid
density and the vapor pressure. As a conclusion the proposed model can
produce quite reliable results also for the prediction of those thermody-
namic quantities involving higher-order derivatives of aR, notwithstanding
that no input was given for them during the training procedure. In fact the
EEoS–NN model trained only on density and coexistence data can satis-
factorily predict second-order properties.

6.3. Validation of the EEoS–NN Models Trained on Multiproperty Data

A procedure similar to that formerly discussed at Section 6.2 was
performed for the models trained on values of the four thermodynamic
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Table VII. Comparison between the Values of the Deviation Func-
tion Obtained for Training and Validation Sets

Training Validation
Fluid doverall doverall

C2H6 0.185×10−3 0.185×10−3

C3H8 0.296×10−3 0.278×10−3

n-C4H10 0.221×10−3 0.211×10−3

R32 0.175×10−3 0.174×10−3

R125 0.358×10−3 0.334×10−3

R134a 0.154×10−3 0.151×10−3

R143a 0.178×10−3 0.167×10−3

NH3 0.338×10−3 0.336×10−3

H2O 0.442×10−3 0.415×10−3

Table VIII. Accuracy of the EEoS–NN Models in Terms of AAD for First-Order Proper-
ties in the Three Main Thermodynamic Regions

AAD (%)

ZR uR hR

Fluid sc l v sc l v sc l v

C2H6 0.030 0.001 0.040 0.118 0.078 0.250 0.094 0.067 0.181
C3H8 0.100 0.001 0.089 0.258 0.072 0.265 0.219 0.063 0.199
n-C4H10 0.048 0.001 0.056 0.387 0.052 0.320 0.316 0.046 0.234
R32 0.045 0.001 0.047 0.169 0.063 0.242 0.137 0.055 0.184
R125 0.056 0.002 0.119 0.302 0.051 0.917 0.240 0.045 0.644
R134a 0.047 0.001 0.058 0.222 0.039 0.279 0.187 0.036 0.216
R143a 0.031 0.001 0.031 0.279 0.059 0.277 0.218 0.053 0.204
NH3 0.137 0.002 0.085 0.331 0.069 0.528 0.279 0.061 0.403
H2O 0.271 0.002 0.065 0.392 0.050 0.275 0.347 0.045 0.216
Mean 0.053 0.001 0.064 0.236 0.058 0.368 0.191 0.051 0.273

aR gR sR

Fluid sc l v sc l v sc l v

C2H6 0.030 0.018 0.034 0.030 0.013 0.035 0.191 0.151 0.447
C3H8 0.119 0.016 0.094 0.112 0.012 0.091 0.377 0.132 0.426
n-C4H10 0.083 0.011 0.042 0.068 0.009 0.047 0.605 0.095 0.542
R32 0.058 0.017 0.034 0.053 0.014 0.038 0.261 0.116 0.381
R125 0.080 0.011 0.170 0.065 0.008 0.130 0.484 0.089 1.716
R134a 0.073 0.012 0.036 0.062 0.009 0.044 0.315 0.071 0.435
R143a 0.043 0.018 0.029 0.037 0.014 0.029 0.459 0.106 0.460
NH3 0.186 0.016 0.063 0.167 0.012 0.070 0.448 0.132 0.836
H2O 0.385 0.013 0.056 0.339 0.010 0.057 0.443 0.094 0.405
Mean 0.070 0.014 0.059 0.062 0.011 0.058 0.367 0.107 0.614
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Table IX. Accuracy of the EEoS–NN Models in Terms of AAD for Second-Order Proper-
ties in the Three Main Thermodynamic Regions and for Saturation Properties

AAD (%)

cR
v cR

p w

Fluid sc l v sc l v sc l v

C2H6 5.004 8.860 6.285 0.663 1.888 1.665 0.335 0.410 0.029
C3H8 13.436 5.797 2.392 2.200 1.384 1.090 0.872 0.352 0.061
n-C4H10 16.540 3.921 4.900 2.764 0.959 1.383 0.535 0.189 0.037
R32 7.286 3.453 4.601 1.360 1.236 1.805 0.832 0.305 0.095
R125 10.200 3.827 7.442 1.565 0.800 2.903 0.487 0.383 0.026
R134a 8.568 2.809 4.788 1.875 1.003 2.063 0.728 0.176 0.030
R143a 9.398 6.037 4.637 1.392 1.864 1.432 0.401 0.279 0.030
NH3 7.360 2.851 6.411 3.569 1.375 2.739 0.734 0.566 0.182
H2O 3.208 1.665 1.864 4.558 1.300 1.128 1.123 0.935 0.057
Mean 8.834 4.149 4.883 1.567 1.278 1.831 0.545 0.393 0.069

Cv Cp Saturation properties

Fluid sc l v sc l v P sat ρsl ρsv

C2H6 0.569 1.555 0.297 0.367 0.850 0.304 0.061 0.010 0.073
C3H8 1.199 0.801 0.137 1.333 0.532 0.343 0.066 0.089 0.211
n-C4H10 1.250 0.425 0.233 1.312 0.306 0.259 0.068 0.047 0.165
R32 1.871 1.206 0.612 0.928 0.679 0.499 0.064 0.064 0.172
R125 1.160 0.590 0.346 0.800 0.328 0.347 0.059 0.102 0.206
R134a 1.304 0r.651 0.401 1.132 0.439 0.492 0.050 0.009 0.069
R143a 1.298 1.220 0.250 0.741 0.783 0.209 0.066 0.015 0.068
NH3 2.650 1.227 1.173 2.857 0.789 0.964 0.073 0.025 0.137
H2O 1.817 0.962 0.393 4.275 0.746 0.432 0.047 0.048 0.153
Mean 1.192 0.916 0.481 0.929 0.587 0.461 0.061 0.046 0.142

quantities ZR, cR
v , cR

p ,w plus the ones on the coexistence curve. As an
example, the coefficients of the equation obtained in this case for R32 are
given in Table VI.

Comparing the results for the training on density and coexistence
data, which were presented in Table VIII, with the results of the multi-
property training reported in Table X, it can be seen that the prediction of
first-order properties becomes globally worse for more or less all the prop-
erties, but in general the difference is not significant.

For the second-order properties, Table XI shows that there is an evi-
dent improvement of performance for the isochoric heat capacity in all
the regions and for the isobaric heat capacity in the liquid phase, both as
residual and as overall values. For some fluids this improvement is larger,
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Table X. Accuracy of the EEoS–NN Models in the Multiproperty Case in Terms of AAD
for First-Order Properties in the Three Main Thermodynamic Regions

AAD (%)

ZR uR hR

Fluid sc l v sc l v sc l v

C2H6 0.063 0.003 0.063 0.111 0.016 0.226 0.095 0.014 0.163
C3H8 0.128 0.002 0.164 0.220 0.039 0.384 0.197 0.034 0.312
n-C4H10 0.092 0.002 0.122 0.190 0.010 0.334 0.166 0.009 0.250
R32 0.197 0.002 0.112 0.325 0.041 0.519 0.287 0.036 0.379
R125 0.094 0.002 0.283 0.091 0.031 0.459 0.088 0.027 0.255
R134a 0.102 0.002 0.136 0.242 0.016 0.410 0.196 0.014 0.314
R143a 0.136 0.002 0.232 0.159 0.049 0.889 0.148 0.044 0.637
NH3 0.615 0.009 0.417 0.905 0.036 1.162 0.731 0.033 0.910
H2O 0.744 0.002 0.095 1.267 0.098 0.323 1.142 0.088 0.255
Mean 0.136 0.003 0.183 0.208 0.037 0.541 0.183 0.033 0.402

aR gR sR

Fluid sc l v sc l v sc l v

C2H6 0.076 0.006 0.061 0.069 0.005 0.060 0.154 0.027 0.420
C3H8 0.147 0.024 0.123 0.139 0.019 0.137 0.293 0.060 0.647
n-C4H10 0.150 0.021 0.092 0.124 0.016 0.102 0.227 0.017 0.542
R32 0.199 0.013 0.121 0.201 0.011 0.109 0.459 0.065 0.853
R125 0.095 0.014 0.451 0.080 0.010 0.343 0.121 0.058 1.176
R134a 0.132 0.006 0.110 0.120 0.005 0.119 0.348 0.027 0.632
R143a 0.117 0.027 0.227 0.123 0.022 0.227 0.221 0.066 1.466
NH3 0.719 0.037 0.391 0.673 0.030 0.395 1.193 0.043 1.691
H2O 1.099 0.028 0.077 0.953 0.021 0.082 1.411 0.197 0.477
Mean 0.153 0.020 0.185 0.143 0.016 0.177 0.279 0.063 0.892

especially for the isochoric heat capacity. The performance for the speed
of sound remains at the same level as before with some small variations
depending on the specific fluid.

The comparisons for the coexistence locus, reported in Table XI, are
also very promising. The obtained accuracy is similar to the accuracy
resulting from the training to first-order properties, see Table IX.

The inclusion of data for second-order quantities into the training set
improves the EEoS–NN model for such properties, obtaining a more sat-
isfactory performance for them. In fact, in this case information about
higher-order derivatives of aR is supplied to the model.
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Table XI. Accuracy of the EEoS–NN Models in the Multiproperty Case in Terms of AAD
for Second-Order Properties in the Three Main Thermodynamic Regions and for Saturation

Properties

AAD (%)

cR
v cR

p w

Fluid sc l v sc l v sc l v

C2H6 2.695 1.367 3.464 0.832 0.355 1.227 0.288 0.194 0.019
C3H8 1.929 1.292 1.399 2.154 0.318 1.042 0.323 0.408 0.046
n-C4H10 1.989 0.711 1.768 1.760 0.170 0.927 0.581 0.184 0.038
R32 2.778 0.706 2.710 2.250 0.388 1.162 0.931 0.291 0.059
R125 3.493 0.469 2.615 0.626 0.173 1.040 0.262 0.180 0.047
R134a 3.672 0.870 3.045 1.496 0.185 1.692 0.445 0.290 0.100
R143a 1.822 0.948 2.469 0.713 0.123 1.061 0.302 0.256 0.051
NH3 5.725 0.939 3.258 6.613 0.363 1.652 1.713 0.617 0.197
H2O 3.750 1.329 1.862 6.658 1.214 1.289 1.532 0.666 0.076
Mean 2.792 0.946 2.628 1.493 0.363 1.261 0.456 0.348 0.075

Cv Cp Saturation properties

Fluid sc l v sc l v P sat ρsl ρsv

C2H6 0.387 0.224 0.250 0.554 0.182 0.307 0.011 0.038 0.224
C3H8 0.211 0.187 0.082 1.478 0.130 0.320 0.085 0.065 0.192
n-C4H10 0.174 0.077 0.071 1.203 0.059 0.163 0.098 0.061 0.209
R32 0.856 0.243 0.477 1.767 0.229 0.406 0.041 0.075 0.151
R125 0.418 0.073 0.107 0.312 0.078 0.141 0.019 0.053 0.103
R134a 0.635 0.171 0.319 1.045 0.086 0.452 0.061 0.044 0.141
R143a 0.272 0.174 0.195 0.428 0.055 0.227 0.087 0.016 0.158
NH3 2.221 0.399 0.709 5.613 0.213 0.727 0.140 0.136 0.596
H2O 2.055 0.752 0.396 6.092 0.712 0.530 0.191 0.110 0.344
Mean 0.501 0.254 0.335 1.036 0.192 0.398 0.087 0.069 0.240

7. CHOOSING THE NUMBER OF POINTS OF THE TRAINING
SET: CASE OF ETHANE

The discussed modeling technique is able to heuristically develop a
pure-fluid fundamental DEoS based on a limited number of data. The
question is now posed about how much it is possible to reduce the num-
ber of points composing the training set without compromising the final
result, i.e., how limited the experimental effort necessary for the develop-
ment of a DEoS in this format can be. Using generated data as before,
tests on how many data points are required to guarantee a good perfor-
mance of the EEoS–NN model were made. The fluid ethane was chosen
for the analysis.
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In this particular study reference is made to the training case in which
only density and coexistence data are used as input for the regression;
the details of the training process are described in Section 5.1. At that
point more than 600 P,ρ, T data points were included into the training
set together with a very limited number of coexistence data. Starting from
the original number of 625 points, six training cases, in which the number
of density points in the training set is reduced by 50% each time, are now
considered. The obtained models are validated with respect to the values
of the remaining points of the original grid composed of 5329 points, see
Table II.

The values of the objective function fob,overall and of the deviation
doverall obtained for each case are plotted in Fig. 4 for both the train-
ing and the validation data as functions of the number of points in the
training set. As this number gets smaller, the fob,overall and doverall func-
tions for the training set improve. At the same time the accuracy of
predictions decreases, particularly when the number of points becomes
smaller than 100. Cases 5 and 6 represent extreme conditions since for
them the number of input data for the regression is lower than the number
of parameters to determine; in these circumstances, the regression pro-
duces an unacceptable overfitting. Anyway, with more than 100 P,ρ, T

points for training, the prediction accuracy of the model is satisfying and
overfitting is avoided.

8. CONCLUSIONS

The traditional ECS approach for the representation of thermody-
namic properties of pure fluids has been revised in conjunction with one of
the most effective general function approximator techniques, i.e., the neu-
ral networks. In previous studies the basic requirements of the ECS the-
ory were maintained, searching for the conformality between reference and
target fluids. In the present work a step forward is taken developing an
innovative EEoS–NN method using a basic EoS for the fluid of interest.
Such an EoS can be generic as for instance a cubic equation, which can
be set up for practically any fluid because it requires only the critical data
and a few vapor-pressure values to get the acentric factor.

This eliminates the need for choosing a reference fluid conformal with
the target fluid and for the availability of a DEoS to represent the ref-
erence fluid with the highest accuracy. The new method can be used to
develop a fundamental DEoS for any target fluid, where suitable exper-
imental data in the range of interest are available. The technique is not
restricted to the choice of a cubic EoS but any fundamental EoS in the
independent variables T ,ρ, on which the shape functions distortion has to
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Fig. 4. Objective fob,overall and deviation doverall functions and their
dependence on the number of points in the training set: case of ethane.

be applied, can be suitably considered, independently from the functional
form of the EoS.

The EEoS–NN modeling technique has been extensively tested for
a sample of nine pure fluids including non-polar, polar, and strongly
polar substances. For the studied fluids pseudo-experimental thermody-
namic data, generated from substance-specific DEoSs, have been used in
order to avoid disturbances due to scatter and uneven distribution of the
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available experimental data. The model requires a few hundred P,ρ, T

data points distributed on the thermodynamic surface inside the region of
interest and a small number of coexistence data as input. As a result, it
can represent any thermodynamic property, including “second-order” ther-
modynamic properties like isochoric and isobaric heat capacities and speed
of sound. If data for second-order properties are added to the training set,
the accuracy of the EEoS–NN model for these properties increases.

The use of a neural network as a function approximator in such a
model compensates for the initially low accuracy of the basic EoS. The
EEoS–NN method is a promising and innovative modeling technique for
the heuristic development of a DEoS for a pure fluid from multiproper-
ty data, and it is an alternative to the presently available most advanced
heuristic methods.

APPENDIX

Calculation of Thermodynamic Properties for a Pure Fluid
from an Equation of State in the EEoS–NN Format

The equations required for the calculation of the thermodynamic
properties of a pure fluid according to the proposed EEoS–NN format
are given here. As previously explained, the subscript j refers to the fluid
of interest, while the subscript 0 denotes values calculated from the basic
equation for the model, which in the present case is the SRK cubic EoS
with Peneloux volume translation [18, 19, 22]. The independent variables
of the EEoS model and of the basic equation are related by

T0 =Tj/θj ρ0 =ρjφj (A1,A2)

The main thermodynamic properties considered in this work are
obtained as follows:

Compressibility factor: ZR
j ≡Pj/ρjRTj −1=FρuR

0 + (1+Hρ)ZR
0 (A3)

Helmholtz energy: aR
j =AR

j /RTj =aR
0 (A4)

Internal energy: uR
j =UR

j /RT j = (1−FT )uR
0 −HT ZR

0 (A5)

Enthalpy: hR
j =HR

j /RTj =hR
0 + (Fρ −FT )uR

0 + (Hρ −HT )ZR
0 (A6)

Gibbs energy: gR
j =GR

j /RTj =gR
0 +FρuR

0 +HρZR
0 (A7)
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Entropy: sR
j =SR

j /R = sR
0 −FT uR

0 −HT ZR
0 (A8)

Isochoric heat capacity: cR
v,j =CR

v,j /R =−T 2
j

(
∂2aR

j

∂T 2
j

)

ρj

+2uR
j (A9)

Isobaric heat capacity: cR
p,j=CR

p,j /R = cR
v,j+

[
1+ZR

j +ρjTj

(
∂2aR

j

∂ρj ∂Tj

)]2

1+2ZR
j +ρ2

j

(
∂2aR

j

∂ρ2
j

)
Tj

−1

(A10)

Speed of sound: wj =

√√√√√RTj

Mj

Cp,j

Cv,j


1+2ZR

j +ρ2
j

(
∂2aR

j

∂ρ2
j

)

Tj


 (A11)

Fugacity coefficient: ln ϕj = gR
j − ln(1+ZR

j )

= aR
j +ZR

j − ln(1+ZR
j ) (A12)

The second derivatives in Eqs. (A9)–(A11) are calculated with the follow-
ing equations:

T 2
j

(
∂2aR

j

∂T 2
j

)
ρj

= T 2
0

(
∂2aR

0
∂T 2

0

)
ρ0

(1−FT )2 +2ρ0 T0

(
∂2aR

0
∂ρ0∂T0

)
HT (1−FT )

+ZR
0 HT T −uR

0 (2F 2
T −2FT −FT T )+ρ2

0

(
∂2aR

0
∂ρ2

0

)
T0

H 2
T

(A13)

ρ2
j

(
∂2aR

j

∂ρ2
j

)
Tj

= T 2
0

(
∂2aR

0
∂T 2

0

)
ρ0

F 2
ρ −2ρ0 T0

(
∂2aR

0
∂ρ0∂T0

)
Fρ(1+Hρ)

+ZR
0 (2Hρ +Hρρ)−uR

0 (2F 2
ρ −Fρρ)+ρ2

0

(
∂2aR

0
∂ρ2

0

)
T0

(1+Hρ)2

(A14)
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ρj Tj

(
∂2aR

j

∂ρj ∂Tj

)
= T 2

0

(
∂2aR

0
∂T 2

0

)
ρ0

Fρ(FT −1)

+ρ0 T0

(
∂2aR

0
∂ρ0∂T0

)
[(1+Hρ)(1−FT )−Fρ HT ]

+ZR
0 (HT +HρT )−uR

0 (2FT Fρ −Fρ −FρT )

+ρ2
0

(
∂2aR

0
∂ρ2

0

)
T0

HT (1+Hρ)

(A15)

The logarithmic derivatives of the shape functions are defined as

Fρ ≡ ρj

θj

(
∂θj

∂ρj

)
Tj

Hρ ≡ ρj

φj

(
∂φj

∂ρj

)
Tj

(A16, A17)

FT ≡ Tj

θj

(
∂θj

∂Tj

)
ρj

HT ≡ Tj

φj

(
∂φj

∂Tj

)
ρj

(A18, A19)

Fρρ ≡
ρ2

j

θj

(
∂2θj

∂ρ2
j

)

Tj

Hρρ ≡
ρ2

j

φj

(
∂2φj

∂ρ2
j

)

Tj

(A20, A21)

FT T ≡
T 2

j

θj

(
∂2θj

∂T 2
j

)

ρj

HT T ≡
T 2

j

φj

(
∂2φj

∂T 2
j

)

ρj

(A22, A23)

FρT ≡ ρjTj

θj

(
∂2θj

∂ρj ∂Tj

)
HρT ≡ ρjTj

φj

(
∂2φj

∂ρj ∂Tj

)
(A24, A25)

If the SRK cubic equation is selected as the basic equation for the
EEoS model, the quantities in Eqs. (A3)–(A15) are calculated with the
following expressions:

aR
0 =− ln[1+ (c−b)ρ0]− aSRK

RT0b
ln
[

1+ (c+b)ρ0

1+ cρ0

]
(A26)

ZR
0 =− (c−b)ρ0

1+ (c−b)ρ0
− aSRK

RT0b

[
(c+b)ρ0

1+ (c+b)ρ0
− cρ0

1+ cρ0

]
(A27)

uR
0 = 1

Rb

(
∂aSRK

∂T0
− aSRK

T0

)
ln
[

1+ (c+b)ρ0

1+ cρ0

]
(A28)
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hR
0 = uR

0 +ZR
0 (A29)

gR
0 = aR

0 +ZR
0 (A30)

sR
0 = uR

0 −aR
0 (A31)

(
∂2aR

0

∂T 2
0

)

ρ0

=− 1
RbT0

(
∂2aSRK

∂T 2
0

− 2
T0

∂aSRK

∂T0
+ 2aSRK

T 2
0

)
ln
[

1+ (c+b)ρ0

1+ cρ0

]

(A32)

(
∂2aR

0

∂ρ2
0

)

T0

=
[

(c−b)

1+ (c−b)ρ0

]2

+ aSRK

RT0b

{[
(c+b)

1+ (c+b)ρ0

]2

−
(

c

1+ cρ0

)2
}

(A33)(
∂2aR

0

∂ρ0∂T0

)
= − 1

RbT0

(
∂aSRK

∂T0
− aSRK

T0

)[
(c+b)

1+ (c+b)ρ0
− c

1+ cρ0

]
(A34)

In the present work the shape functions are obtained in the form of a
multi-layer feedforward neural network. The equations for the calculation
of the shape functions and their derivatives are reported in the following.
The correspondence of the physical variables of the system with the vari-
ables of the neural model is given by

V1 =Tj V2 =ρj (A35, A36)

W1 = θj W2 =φj (A37, A38)

Neural network inputs

Ui =ui(Vi −Vi,min)+Amin with ui = Amax −Amin

Vi,max −Vi,min
for 1≤ i ≤ I −1

(A39, A40)

UI =Bias1 (A41)

Hidden layer inputs and outputs

Gj =
I∑

i=1

wijUi 1≤ j ≤J (A42)

Hj = g

(
I∑

i=1

wijUi

)
1≤ j ≤J (A43)

HJ+1 = Bias2 (A44)
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Output layer inputs and outputs

Rk =
J+1∑
j=1

wjkHj 1≤k ≤K (A45)

Sk = g(Rk) 1≤k ≤K (A46)

Physical variable outputs

Wk = Sk −Amin

sk
+Wk,min with sk = Amax −Amin

Wk,max −Wk,min
for 1≤k ≤K

(A47, A48)

Output derivatives

∂Wk

∂Vm

= um

sk
g′(Rk)

J∑
j=1

wmjwjkg
′(Gj ) 1≤m≤ I −1,1≤k ≤K (A49)

∂2Wk

∂Vm∂Vn

= umun

sk
g′′(Rk)


 J∑

j=1

wmjwjkg
′(Gj )




 J∑

j=1

wnjwjkg
′(Gj )




+g′(Rk)


 J∑

j=1

wmjwnjwjkg
′′(Gj )


 1≤m,n≤ I −1,1≤k ≤K

(A50)

where

g(x)= 1
π

arctan(γ x)+ 1
2

(A51)

g′(x)= dg(x)

dx
= γ

π [1+ (γ x)2]
(A52)

g′′(x)= d2g(x)

dx2
= −2γ 3x

π [1+ (γ x)2]2
(A53)
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